Tuesday, July 29, 2025

๐Ÿ“ฑ Mobile App Testing: 10 Critical Test Scenarios You Can’t Miss (That Go Beyond Web UI Testing)


When it comes to testing mobile applications, the challenges go far beyond what typical web UI testing entails. Mobile apps must work flawlessly across a fragmented ecosystem of devices, screen sizes, OS versions, sensors, network conditions—and still deliver a high-performance experience. That’s why test engineers must design test cases that account for mobile-specific conditions that web-based apps don’t encounter.

In this post, we’ll break down the 10 critical mobile app test cases that every QA engineer should prioritize—and explain how they differ from traditional web UI testing.


✅ 1. Installation & Launch

Unlike web apps, mobile apps must be installed, upgraded, and uninstalled through OS-specific stores like Google Play or Apple App Store.

Test Cases:

  • App installs/uninstalls cleanly on all supported devices.

  • Launches successfully after a clean install or version upgrade.

  • First-launch behavior (onboarding, permission prompts) works without failure.


๐ŸŒ 2. Device & OS Compatibility

Mobile ecosystems are highly fragmented. You must ensure compatibility across OS versions, hardware specs, and screen dimensions.

Test Cases:

  • Verify app functionality on Android 10–14 and iOS 14–17.

  • Check responsiveness across tablets, foldables, and small-screen phones.

  • Test on low-RAM or budget devices (to catch memory issues).


๐Ÿ“ถ 3. Network Conditions

Mobile users are always switching between 5G, Wi-Fi, and even no network. Your app must handle this gracefully.

Test Cases:

  • App behaves predictably with no internet or low bandwidth.

  • Test auto-retries for failed API calls due to timeouts.

  • Switching from Wi-Fi to mobile data mid-session doesn’t break functionality.


๐Ÿ”„ 4. Background & Resume Behavior

A mobile app should maintain state and not crash when interrupted by a phone call or switching to another app.

Test Cases:

  • App resumes gracefully from background state.

  • Data entry is preserved when the user switches away and returns.

  • Proper behavior after a cold restart or after device reboot.


๐Ÿ”‹ 5. Battery & Performance

Performance testing on mobile goes beyond responsiveness—it’s also about battery and resource consumption.

Test Cases:

  • No excessive battery drain during idle or active use.

  • Monitor CPU/memory usage over time (watch for leaks).

  • Measure cold and warm start times.


๐Ÿ” 6. Permission Handling

Mobile apps rely on permissions to access hardware features. You must test both granting and denying permissions.

Test Cases:

  • App only requests necessary permissions.

  • Behavior is graceful when permissions are denied or revoked.

  • Scoped storage compliance (Android 11+) is in place.


๐Ÿ”” 7. Push Notifications

Push notifications are a core engagement channel and must work across all app states.

Test Cases:

  • Push received when app is in background or killed.

  • Tapping the notification leads to correct app screen.

  • Notifications respect user opt-in/opt-out settings.


๐Ÿ“ฒ 8. Gestures & UI Flexibility

Mobile users interact via gestures and virtual keyboards, making UX more dynamic than web.

Test Cases:

  • UI responds correctly to swipes, taps, long presses, and pinch-to-zoom.

  • Keyboard overlays don’t hide important input fields.

  • Smooth adaptation to dark mode, orientation changes (portrait ↔ landscape).


๐Ÿ” 9. Security Testing

Security is non-negotiable, especially with personal data or financial transactions involved.

Test Cases:

  • Secure storage for sensitive data (e.g., keystore/token vault).

  • No sensitive logs left in logcat or crash logs.

  • Behavior on rooted/jailbroken devices is safely restricted.


๐Ÿ“Š 10. Analytics & Store Compliance

Apps often embed SDKs for analytics and crash reporting, and must comply with store policies.

Test Cases:

  • Verify Firebase, GA, or Crashlytics events are firing correctly.

  • App follows Play Store / App Store policy (e.g., no deprecated APIs).

  • Correct versioning and metadata shown in store listing.


    ๐Ÿงช Final Thoughts

    If you’re only testing your mobile app like a web app, you’re missing half the picture. Mobile brings unique challenges and requires a deeper, device-aware test strategy. The 10 critical mobile test areas above should form the core of your test planning, especially for high-scale production apps used across a variety of devices and conditions.

Monday, July 28, 2025

๐Ÿš€ Introducing the Universal API Testing Tool — Built to Catch What Manual Testing Misses


In today’s software-driven world, APIs are everywhere — powering everything from mobile apps to microservices. But with complexity comes risk. A single missed edge case in an API can crash systems, leak data, or block users. That’s a huge problem.

After years of working on high-scale automation and quality engineering projects, I decided to build something that tackles this challenge head-on:

๐Ÿ‘‰ A Universal API Testing Tool powered by automation, combinatorial logic, and schema intelligence.

This tool is designed not just for test engineers — but for anyone who wants to bulletproof their APIs and catch critical bugs before they reach production.


๐Ÿ” The Problem with Manual API Testing

Let’s face it: manual API testing, or even scripted testing with fixed payloads, leaves massive blind spots. Here’s what I’ve consistently seen across projects:

  • ๐Ÿ” Happy path bias: Most tests cover only expected (ideal) scenarios.

  • ❌ Boundary and edge cases are rarely tested thoroughly.

  • ๐Ÿงฑ Schema mismatches account for over 60% of integration failures.

  • ๐Ÿ”„ Complex, nested JSON responses break traditional test logic.

Even with the best intentions, manual testing only touches ~15% of real-world possibilities. The rest? They’re left to chance — and chance has a high failure rate in production.


๐Ÿ’ก Enter: The Universal API Testing Tool

This tool was created to turn a single API request + sample response into a powerful battery of intelligent, automated test cases. And it does this without relying on manually authored test scripts.

Let’s break down its four core pillars:


๐Ÿ” 1. Auto-Schema Derivation

Goal: Ensure every response conforms to an expected structure — even when you didn’t write the schema.

  • Parses sample responses and infers schema rules dynamically

  • Detects type mismatches, missing fields, and violations of constraints

  • Supports deeply nested objects, arrays, and edge data structures

  • Validates responses against actual usage, not just formal docs

๐Ÿ”ง Think of it like “JSON Schema meets runtime intelligence.”


๐Ÿงช 2. Combinatorial Test Generation

Goal: Generate hundreds of valid and invalid test cases automatically from a single endpoint.

  • Creates diverse combinations of optional/required fields

  • Performs boundary testing using real-world data types

  • Generates edge case payloads with minimal human input

  • Helps you shift-left testing without writing 100 test cases by hand

๐Ÿ“ˆ This is where real coverage is achieved — not through effort, but through automation.


๐Ÿ“œ 3. Real-Time JSON Logging

Goal: Provide debuggable, structured insights into each request/response pair.

  • Captures and logs full payloads with status codes, headers, and durations

  • Classifies errors by type: schema, performance, auth, timeout, etc.

  • Fully CI/CD compatible — ready for pipeline integration

๐Ÿงฉ Imagine instantly knowing which combination failed, why it failed, and what payload triggered it.


๐Ÿ” 4. Advanced Security Testing

Goal: Scan APIs for common and high-risk vulnerabilities without writing separate security scripts.

  • Built-in detection for:

    • XSS, SQL Injection, Command Injection

    • Path Traversal, Authentication Bypass

    • Regex-based scans for sensitive patterns (UUIDs, tokens, emails)

  • Flags anomalies early during development or staging

๐Ÿ›ก️ You don’t need a separate security audit to find the obvious vulnerabilities anymore.


⚙️ How It Works (Under the Hood)

  • Developed in Python, using robust schema libraries and custom validation logic

  • Accepts a simple cURL command or Postman export as input

  • Automatically generates:

    • Schema validators

    • Test payloads

    • Execution reports

  • Debug mode shows complete request/response cycles for every test case


๐Ÿ“ˆ What You Can Expect

The tool is in developer preview stage — meaning results will vary based on use case — but here’s what early adopters and dev teams can expect:

  • ⏱️ Save 70–80% of manual testing time

  • ๐Ÿž Catch 2–3x more bugs by testing combinations humans often miss

  • ⚡ Reduce integration testing time from days to hours

  • ๐Ÿ”’ Get built-in security scans with every API run — no extra work required


๐Ÿงฐ Try It Yourself

๐Ÿ”— GitHub Repository

๐Ÿ‘‰ github.com/nsharmapunjab/frameworks_and_tools/tree/main/apitester


๐Ÿ’ฌ Your Turn: What’s Your Biggest API Testing Challenge?

I’m actively working on v2 of this tool — with plugin support, OpenAPI integration, and enhanced reporting. But I want to build what developers and testers actually need.

So tell me:

➡️ What’s the most frustrating part of API testing in your projects?

Drop a comment or DM me. I’d love to learn from your use cases.


๐Ÿ‘‹ Work With Me

Need help building test automation frameworks, prepping for QA interviews, or implementing CI/CD quality gates?

๐Ÿ“ž Book a 1:1 consultation: ๐Ÿ‘‰ topmate.io/nitin_sharma53


Thanks for reading — and if you found this useful, share it with your dev or QA team. Let’s raise the bar for API quality, together.

#APITesting #AutomationEngineering #QualityAssurance #DevOps #OpenSource #TestAutomation #PythonTools #API #SDET #NitinSharmaTools

My Profile

My photo
can be reached at 09916017317