Tuesday, June 24, 2025

Performance Metrics Measure

Performance testing is only as effective as the metrics you measure and act on. In distributed systems, it’s not just about response time — it’s about end-to-end system behavior under loadresource utilization, and failure thresholds.


Here’s how I typically categorize and collect key performance testing metrics, based on my real-world experience with high-scale platforms.


✅ 1. Core Performance Metrics

Metric

Why It Matters

Throughput (TPS/QPS)

Measures system capacity — are we handling the expected load?

Latency (P50, P95, P99)

Helps detect tail latencies and slow paths. P99 is critical for user experience.

Error Rate (%)

Any spike under load suggests bottlenecks or instability.

Concurrency

Helps test thread safety and async processing under pressure.

Time to First Byte / Full Response

Important for APIs and UI performance perception.


✅ 2. Resource Utilization Metrics

Resource

Metric

Purpose

CPU

% Usage, context switches

Detect CPU-bound operations

Memory

Heap/Non-heap usage, GC pause time

Tune for memory leaks, OOM risk

Disk I/O

Read/write IOPS, latency

Ensure storage doesn’t become a bottleneck

Network

Throughput, packet loss, RTT

Catch bandwidth saturation, dropped packets

Thread Pools

Active threads, queue size

Avoid thread starvation under load


Tools used: PrometheusGrafanaNew Relictopvmstatiostatjstatjmapasync-profiler

✅ 3. Application-Specific Metrics

Component

Metrics to Monitor

Kafka

Consumer lag, messages/sec, ISR count

DB/Cache (e.g., Redis, Postgres)

Query latency, cache hit/miss, slow query logs

Elasticsearch

Query throughput, indexing rate, segment merges, node GC

Spark Jobs

Task duration, shuffle read/write, executor memory spill

API Layer

Response codes breakdown (2xx, 4xx, 5xx), rate-limited requests

✅ 4. Infrastructure & Cluster Health

Service

Key Indicators

Kubernetes

Pod restarts, node CPU/mem pressure, eviction count

Disk Space

Free space per node, inode usage

GC Behavior

GC frequency, full GC %, pause durations

Auto-scaling Logs

Scale-up/down events, throttle rates


✅ 5. Stability & Reliability Metrics

Category

Why It Matters

Test Flakiness Rate

Detects inconsistent behavior under load

Success % under chaos

How gracefully does the system degrade?

Retry Count / Circuit Breaker Trips

Signals downstream failures under load

Service Uptime %

Validates HA/resilience against failures


🔧 How I Collect & Analyze Metrics

  • Test Harness Integration: I integrate metrics collection directly into test frameworks (e.g., expose custom Prometheus counters in Java test harness).

  • Dashboards: Build tailored Grafana dashboards for real-time observability of test runs.

  • Thresholds & SLOs: Define thresholds for acceptable P95 latency, error rate, and resource usage — any breach flags a performance regression.

  • Baseline Comparison: Run nightly jobs to compare metrics vs. last known good release and flag deltas.

Sunday, June 22, 2025

🚀 Mastering Kubernetes: 20+ Daily kubectl Commands Every Engineer Should Know



Whether you’re debugging a pod or scaling deployments, having the right commands at your fingertips can save hours of troubleshooting.


Here’s your quick-reference guide to essential kubectl commands used by DevOps, SREs, and Cloud Engineers every single day:

In below examples, assume "services" is the namespace given for your micro-services


🔹 Context & Cluster Navigation

  • kubectl config get-contexts – List all available contexts

  • kubectx <env-name> – Switch between environments


🔹 Nodes & Namespaces

  • kubectl get nodes – View all cluster nodes

  • kubectl get namespaces – List all namespaces


🔹 Pods & Deployments

  • kubectl -n services get pod <pod-name> – Get specific pod details

  • kubectl -n services get pods – List all pods in a namespace

  • kubectl -n services delete pod <pod-name> – Delete a specific pod

  • kubectl -n services get pods -o wide | grep ½ – Filter for unhealthy pods


🔹 Detailed Views

  • -o wide – Add node-level details

  • -o yaml – See full YAML output

  • kubectl describe pod <pod-name> -n services – Inspect pod specs


🔹 Inside the Pod

  • kubectl exec -it <pod-name> -n services -- /bin/bash – SSH into a pod

  • kubectl logs <pod-name> -c install -f -n services – View Init container logs


🔹 Scaling & Rollouts

  • kubectl scale deploy <pod-name> --replicas=3 -n services – Manual scaling

  • kubectl rollout restart deployment <pod-name> -n services – Restart a service


🔹 HPA & Canary Checks

  • kubectl get hpa <pod-name> -n services – Horizontal Pod Autoscaler status

  • kubectl describe canary <pod-name> -n services – Inspect a canary deployment

  • kubectl get canary -n services – List all canary-enabled pods


🔹 Logs & Troubleshooting (with Stern)

  • stern -n services <pod-name> -c <app-name> -t --since 1m – Tail recent logs

  • stern -n services geolayers-api-primary -c geolayers-api -t --since 1m | grep '<text>' – Filter logs with grep


🔹 Consul & Vault Checks

  • kubectl get pods -n configuration – View Consul/Vault status

  • stern -n configuration <name> – Stream logs from Vault


📘 BonusOfficial kubectl Cheat Sheet


💬 Which of these commands saved you recently — or is there a favorite one missing from the list?

Drop it in the comments and let’s build the ultimate K8s cheat sheet together. 👇


#Kubernetes #DevOps #CloudEngineering #SRE #kubectl #CheatSheet #K8sTips #PlatformEngineering #LinkedInLearning #Productivity

My Profile

My photo
can be reached at 09916017317